Open Ended Problems that Could be Used to Provide Differentiated Instruction in Mathematics

These problems have been taken from various sources. Where known, I have given the source. In some cases I do not know the source but if you find the source I'd be glad to include it here. If you have any problems to add to this list, please e-mail them to <u>sean.delaney@mie.ie</u>. The language of some of the problems may be challenging for some children and it is assumed that the teacher will spend some time discussing the problem with the class before they begin solving the problem. Some of the terms that will need to be explained before solving the problems are: integers, whole numbers, positive, sum, product, element, expression, represent, consecutive, number sentence, arithmetic, combinations, symbols, area, perimeter, total, elevation, remainder, ratio, region, rectangular,

PROBLEM	SOURCE	STRAND &	POSSIBLE SKILLS	SUGGESTED
		STRAND UNIT		CLASS LEVEL
Find a set of positive integers whose sum is 20 and	www.math.toronto.edu/barbeau	Number	Explaining,	3rd to 6th
whose product is as large as possible. Explain why	/elemarith.pdf#search=%22Probl	(Number	communicating	
your answer is correct. (Note that there is no	ems%20for%20elementary%teac	theory)	and expressing,	
restriction on the number of elements in the set,	<u>hers%22</u>		reasoning,	
but be sure that you select only positive integers.)			applying and	
			problem solving	
Write a real-life story problem that could be		Number		5th, 6th
represented by the expression $\frac{1}{2} - \frac{1}{3}$.		(fractions)		
How many whole numbers less than 50 can be		Number	Explaining,	3rd to 6th
written as the product of two or more consecutive		(Number	integrating and	
whole numbers?		theory)	connecting	
			_	
David, Mark, Laura and Sarah's ages are 9, 7, 4, and		Number		4th to 6th
1. How many different four-digit numbers can you		(Place value)		
make with these four numbers? What is the				
smallest? What is the largest?				
How many number sentences can you write that		Number		1st - 6th (Could
equal 10?		(algebra,		be adapted for
		operations)		any number)
Using any arithmetic combinations or symbols, how		Number		3rd to 6th
can you use exactly seven 4s to make 100?		(operations)		
I used two identical shapes to make a rectangle.	(Baker and Baker, 1991)	Shape and		1st - 6th
What might they have been?		space		

Compiled by Seán Delaney, MIE

Show all the rectangular regions you can make using 24 tiles (1-inch or 1-centimetre squares). You need to use all the tiles. Count and keep a record of the area and perimeter of each rectangle and then look for and describe any relationships you notice. Rebecca notices boys and dogs running past her at the park. She counts a total of 40 legs running by. How many boys and how many dogs might have	Principles and Standards for School Mathematics (p. 183) National Council of Teachers of Mathematics website	Measures (perimeter and area)	Applying (concepts and strategies) and problem solving	4th to 6th 3rd to 6th
The front elevation of a 3-D shape is shown below. The shape was constructed from two 3-D shapes, one placed on top of the other. List the possible shapes that could have been used.		Shape and space- 3-D shape	Visualising, explaining, communicating	3rd, 4th

A farmer wants to build a new area for his sheep.	Adapted from a problem on the			5th & 6th
The farmer decides that the enclosure must be	NCTM website			
square or rectangular with an area of 100 square				
metres.				
(i) What could be the possible side-lengths of				
the enclosure?				
(ii) How many metres of fencing will be				
needed for each possible design?				
(iii) Use your copy or some graph paper to				
draw all the possible rectangular or				
square designs.				
(iv) Include a key to tell how much each unit on				
the grid paper equals.				
(v) Which fence would you advise the farmer				
to build? Why?				
What is the most efficient way you can think of to		Number		6th
find the sum of all the numbers from 1 to 100? i.e.				
1+2+3+4+100.				4
I have 10-cent, 5-cent and 1-cent coins in my		Number,		1st to 6th
money box. If I open the box and take out three		measures		
coins, how much money could I have? How can you				
be sure that you have found all the possible				
amounts?				
Start with two identical rectangular regions – each	Principles and Standards for	Number	Reasoning	3rd
the same size. Cut each of the two rectangles in	School Mathematics (p. 190)	(fractions)		
half as shown below. Compare one of the smaller				
rectangles to one of the right triangles; do they				
have the same area or does one have a larger area				
than the other?				

Other Interesting Problems				
If you fold a square paper vertically, the new	http://sln.fi.edu/school/math2/s	Measures	Applying and	6th
rectangle has a perimeter of 39 inches. What is the	<u>ept.html</u>	(Length)	problem solving,	
area of the original square?			reasoning,	
What is the perimeter of the original square?			integrating and	
What is the area of the resulting rectangle?		Also Number	connecting,	
Make a ratio of areas and perimeters. What do you		(fractions)	communicating	
notice?			and expressing	
One night, Papa Chimp felt hungry. He swung into	http://www.vtaide.com/png/ban	Number	Explaining,	6th
the treehouse kitchen and ate 1/6 of a bunch of	<u>anas.htm</u>	(Fractions)	communicating	
bananas.			and expressing,	
			applying and	
Next morning, Mama Chimp ate up 1/5 of what			problem solving	
Papa Chimp had left before heading towards the				
market. Brother Chimp came home from school				
that afternoon and ate 1/4 of the remaining				
bananas. Sister Chimp saw what was left and took				
1/3 of it.				
Finally, Daby Chimp ato 1/2 of the remainder				
Finally, Baby Chimp ate 1/2 of the remainder,				
an the hunch at first 2				
A rabbit falls into a dry well, thirty metres doop	In Code by Sarah Flannery	Maasuras	Applying and	6th
Since to be at the bettom of a well was not in her	Solution available in book	(Longth)	Applying and	סנוו
original scheme of things, she decides to climb out	Solution available in book	(Length)	problem solving	
When she attempts to do so she finds that after				
going up three metres (and this is the sad hit) she				
slins hack two Frustrated she stons where she is				
for that day and resumes her efforts the following				
morning – with the same result. How many days				
does it take her to get out of the well?				