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Abstract 

Drawing upon and extending work undertaken by Silver and colleagues, in this chapter we 

bring together two fields which have largely developed on parallel tracks: engaging students 

in mathematically challenging tasks and differentiating teaching to meet all students’ needs 

and readiness levels. By working at the intersection of these two lines of research, we attempt 

to understand the implications of this dual focus for teachers’ practice. We do so by 

discussing the entailments of working at the nexus of challenging tasks and differentiation in 

mathematics lessons during lesson planning and enactment (i.e., task launching, student 

autonomous work, and whole-class discussion). Unpacking teaching in this way offers 

insights to researchers and contributes to supporting teachers in addressing both excellence 

and equity in their teaching, two significant educational aspirations in several countries 

around the world.  

 

Keywords: challenging tasks, cognitive activation, cognitive demand, differentiation, 

mathematics, teaching entailments, unpacking teaching.  
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Introduction 

Engaging students in cognitively challenging work in order to foster their 

mathematical learning and reasoning has been systematically emphasized and empirically 

corroborated in both older (Doyle, 1983; Henningsen & Stein, 1997; Stein & Lane, 1996) and 

more recent studies (Baumert et al., 2010; Boston & Smith, 2011; Kunter et al., 2013; OECD, 

2020). Despite its importance, cognitively challenging teaching is rarely documented in 

contemporary mathematics classes. For example, in an examination of algebra teaching 

across eight countries, the Global Teaching InSights study (OECD, 2020) reported that 

students only occasionally engaged in challenging work. On a scale from 1 (lowest score) to 

4 (highest score), the mean score of cognitively demanding teaching observed ranged from 

1.36 in Chile to 2.52 in Japan—a finding that aligns with earlier international comparative 

studies (e.g., see Hiebert et al., 2003; Stigler & Hiebert, 1999). Together, these results suggest 

that such teaching is either rarely prioritized or difficult to enact.  

Yet, in a pioneering project studying the cognitive demands of tasks in mathematics 

classrooms, Silver and colleagues attempted to “revolutionize the possible,” by engaging 

students in urban disadvantaged areas in cognitively challenging work (see Silver & Stein, 

1996). Convinced that this type of teaching would benefit not only students from affluent 

areas, but also students in economically disadvantaged communities, Silver and colleagues 

launched QUASAR (Quantitative Understanding: Amplifying Student Achievement and 

Reasoning), an ambitious project aiming to offer students from disadvantaged backgrounds 

opportunities for high-quality, cognitively demanding, mathematics teaching. Against all 

odds, data from this project (Silver & Stein, 1996; Stein & Lane, 1996; Stein et al., 2007) 

confirmed that such teaching is indeed feasible and beneficial for student learning. In 

particular, positive outcomes were found on several metrics, including (a) performance on a 

challenging test of reasoning, problem solving, and mathematical communication, (b) 
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performance on a typical standardized test (NAEP), and (c) students’ subsequent enrollment 

in algebra classes. As such, the results of the QUASAR project challenged “a pernicious 

belief that high-level mathematical objectives and performance expectations are not 

appropriate for all students,” especially for students from low-income households or students 

who face difficulties in learning mathematics (Silver & Stein, 1996, p. 479).  

Assisting all students to learn important mathematical ideas and gain proficiency with 

mathematical concepts and processes has been a persistent concern for Silver and colleagues. 

This is suggested, among other things, by Silver and Kenney’s (2016) Useful Research on 

Teaching Important Mathematics to All Students, an edited volume of 24 articles aiming to 

communicate to practitioners in simple language important research findings. Doing so was 

thought to represent “an important strategy for increasing the quality of education” (p. v).  

Despite Silver and colleagues’ pioneering work in this area, the lack of documented 

evidence of promoting mathematically challenging work for all students suggests that further 

explication is required of what this type of teaching entails in practice. This becomes 

particularly important, taking into consideration the findings reported above and the 

increasing diversity of student populations in contemporary classes, which imply that 

enacting such teaching for all students requires mathematics educators to carefully unpack 

and map its essence in order to help teachers navigate this complex terrain. It is also critical, 

given the dual emphases on excellence and equity in educational systems worldwide (see 

Kyriakides et al., 2018; OECD, 2016).  

Toward this end, we bring together work undertaken in two areas that are more 

frequently studied independently than together: work on mathematically challenging tasks 

(see Kunter et al., 2013; Stein et al., 2007; Sullivan et al., 2015) and work on differentiation 

(Tomlinson, 2014). Bringing together these two research strands as two overlapping viewing 

lenses can reveal what is entailed in engaging all students in cognitively challenging work 
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during both lesson planning and lesson enactment. As such, this work can have important 

implications for both research and practice. 

Research-wise, it responds to recent calls (cf. Hiebert & Stigler, in press) to consider 

systems of teaching dimensions instead of treating them separately; it also resonates with 

theoretical models that consider differentiation and adaptation to be interwoven with other 

dimensions [e.g., in Charalambous and Praetorius’ (2020) MAIN-Teach model, differentiation 

and adaptation are thought to be interwoven with the dimension of cognitive activation, with 

the latter corresponding to working on challenging mathematics tasks]. This represents a 

move in the opposite direction compared to that undertaken over the past decades: for years, 

teaching dimensions have been treated as the strands of a rope and scholarly work has 

focused on decomposing them in order to better understand them (see Figure 1). Without 

underestimating the benefits accrued from this approach, we argue that it is time to consider 

the strands as intertwined and focus on their interactions instead of treating them as separate 

or independent components. Doing so might illuminate the complexity inherent in teaching 

(cf. Cohen, 2011); it could also help explain its effects on student learning, which, as past 

research has suggested, are lower than expected (cf. Lindorff et al., 2020; Muijs et al., 2014; 

Scheerens, 2016). In this respect, this chapter is likely to be of interest to scholars working on 

understanding and studying teaching quality and its effects on student learning.  

 

 

 

 

 

Figure 1. Teaching as a rope consisting of strands representing different teaching dimensions 

indicating the two that are the focus of this chapter.   

 

Cognitive activation  

Differentiation   
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Practice-wise, this chapter contributes an illustrated example of how mathematical 

challenge and differentiation can be integrated through various parts of a lesson. Such 

teaching requires deliberative work from planning the lesson to the execution of each lesson 

phase. Hence, the teacher must maintain a dedicated, persistent, and simultaneous focus on 

differentiation and challenge throughout the lesson. Documenting the entailments of this 

work can inform teacher preparation programs and professional learning programs for in-

service teachers, especially given that this type of teaching—often identified as ambitious 

mathematics teaching (Cohen, 2011; Lampert et al., 2010)—is expected from both 

experienced and novice teachers (Deunk et al., 2015). Therefore, this chapter offers insights 

to mathematics teacher educators, teacher professional developers in mathematics, and 

teachers of mathematics.  

Engaging All Students in Challenging Work: Insights from Prior Studies  

In this section, we first define key terms pertaining to challenging mathematics work 

and differentiation. We then survey prior studies that have worked at the intersection of these 

strands, and identify research gaps and open issues.  

Defining Key Terms 

Different terms are used to capture challenging work. These include cognitively 

demanding tasks as used by the QUASAR scholars (e.g., Stein et al., 2000), challenging tasks 

(e.g., Sullivan et al., 2012) and work that promotes students’ cognitive activation (e.g., 

Baumert et al., 2010; Kunter et al., 2013). Although not identical, we use these terms 

interchangeably to denote work around mathematical tasks that engage students in high-level 

thinking and mathematical reasoning. Such understanding includes processing multiple 

pieces of information and making connections among them, choosing which strategies to 

apply, explaining the strategies selected, constructing mathematical arguments, responding to 
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others’ arguments, and justifying one’s thinking to the teacher and classmates (NCTM, 2000; 

Stein et al., 2000; Sullivan et al., 2012).  

Differentiation is based on the premise that students achieve their full potential when 

teachers plan and enact lessons that accommodate differences among students (Corno, 2008; 

Tomlinson, 2014).1 This requires matching learning targets, tasks, activities, resources, and 

learning support to learners’ needs, readiness levels, learning profiles, and rates of learning 

(Beltramo, 2017; Stradling & Saunders, 1993). Teachers can differentiate four different 

classroom elements: the content (what is being taught), the process (how it is being taught), 

the product (evidence that students are learning), and students’ learning environment (how 

the classroom works and feels) (Tomlinson, 1999).2 Unlike individualized instruction (cf. 

Slavin et al., 1984), where teachers develop individual tasks or lesson plans for every student 

in the classroom, in differentiated instruction the teacher requires (groups of) students, and/or 

the whole class, to work with key ideas at varied levels of complexity and with varied support 

systems (Tomlinson, 2008). As such, this conceptualization alludes to the importance of 

considering the confluence of cognitive activation and differentiation, to which we turn next.  

Working at the Nexus of Cognitive Activation and Differentiation 

During recent decades, research on cognitive activation and differentiation seems to 

have largely developed on parallel tracks. Research focusing on cognitive activation has 

highlighted the importance of engaging students in cognitively challenging work; however, 

missing from such research was the variation in students’ level of readiness, which pervades 

a typical classroom, and how this variation may interact with the stated objective of 

promoting cognitive engagement (see a similar argument in Tekkumru-Kisa et al., 2020). 

 
1 We purposefully use the term “differentiation”, instead of the term “adaptation”, since the latter term 

represents a wider notion that includes approaches beyond differentiated instruction considered herein, such 

as individualized instruction, personalized learning and open instruction (cf. Dumont, 2018, p. 54).      
2 Teachers may not differentiate all four components within a single lesson. 
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Research on differentiation has focused primarily on elaborating theoretically the importance 

of differentiation, forms it takes, and how they can be enacted in the classroom (cf. Delaney, 

2016; Tomlinson, 2014). The crucial question of how teaching can be differentiated to 

engage all students in cognitively challenging tasks at their own level has not received 

explicit, consistent attention. Despite the non-intersecting paths that these two strands of 

research have tended to follow, the importance of working at their intersection has been 

emphasized by a small body of studies; most of them either theoretically supported or 

empirically validated the critical role of modifying task demands to meet different students’ 

needs as a key element of reinforcing student learning.    

In an explicit early reference to the importance of modifying task demands for 

different students, Good and Power (1976) used the term “high task differentiation” to 

identify one of three general conditions needed to maximize student achievement. 

Challenging the tendency to consider the class as a single unit and to search for the effects of 

certain teaching aspects on student learning, these authors advocated manipulating the 

difficulty level and other aspects of the assigned task demands for different groups of 

students. Toward this end, they proposed different strategies including posing questions that 

vary in cognitive demand and making different materials available in the classroom. 

Subsequent studies empirically corroborated the importance of modifying task complexity for 

student learning, showing its positive effects for either advanced students when cognitive 

complexity is aggravated (e.g., Diezmann & Watters, 2000) or for struggling students when 

cognitive complexity is reduced (Boaler, 2008; Stein & Lane, 1996). 

Several scholars have implicitly underlined the importance of combining cognitive 

activation and differentiation. Corno (2008), for example, emphasized ongoing monitoring of 

students to ascertain the support they need, especially when working on challenging content. 

Similarly, Patrick and colleagues (2012) noted that supporting students’ different needs has 
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meaning when students engage with the learning content in depth and are cognitively 

stimulated, whereas Dumont (2019) claimed that differentiated (or more broadly adaptive) 

instruction needs to challenge every student’s thinking in order to be effective for student 

learning. The notion of cognitive support recently introduced by Kleickmann and colleagues 

(2020) could also be thought to lie at the intersection of cognitive activation and 

differentiation, since it refers to adjusting the support provided to students when the latter are 

involved in challenging work to support students’ progress and learning.   

Perhaps the most systematic work on explicitly attending to both notions and offering 

particular tools for doing so has been conducted by Sullivan and colleagues in Australia.3 

Coining the term “enabling and extending prompts” (or enablers and extenders), Sullivan and 

colleagues (2006) proposed that teachers can support students to access, understand, and 

address mathematically challenging tasks and productively extend their thinking by 

modifying aspects of task complexity: enablers tailor the challenge to support the learning of 

students who experience difficulties accessing the assigned task, whereas extenders further 

extend the challenge and thinking of students who have completed the task (Sullivan et al., 

2016). A series of studies conducted by Sullivan and colleagues in primary grades (Sullivan 

& Davidson, 2014, Sullivan et al., 2009, 2016), secondary grades (Sullivan et al., 2012; 

Sullivan & Mornane, 2014) and in both grade levels (Sullivan et al., 2015) highlighted the 

potential of this approach for supporting teachers’ attempts to engage different groups of 

students in cognitively challenging work; it has also documented positive changes in 

students’ performance and stance toward complex mathematical work. 

In sum, only a small body of prior studies has explicitly combined considerations of 

cognitive activation and differentiation. Yet, such studies have typically either focused on a 

 
3 Other scholars (e.g., Little et al., 2009) have also worked on exploring how complexity can be adapted for 

different groups of students. However, their work was more limited in scope than that of Sullivan and 

colleagues.  
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limited aspect of teachers’ work at the intersection of these two fronts—as the research on 

enablers or extenders suggests—or have not systematically examined what it means to 

concurrently attempt to address both goals. In this study, we probe the boundaries between 

these two strands, by working at their intersection in order to contribute towards their 

integration—a need that has recently been highlighted by Walter Doyle, one of the first 

scholars who systematically discussed the role of challenging tasks in supporting student 

learning (Doyle, 1983, 1988). Working with colleagues, Doyle has emphasized the need to 

study how teachers select, adapt, and enact challenging tasks in ways that make these tasks 

accessible to all students, without removing the challenge (Tekkumru-Kisa et al., 2020). 

Reviewing almost 40 years of research on challenging tasks, these scholars have identified 

this need as a key open issue in the field. Considerations of task complexity have been 

identified in research on differentiation, as the previous section suggested—yet, without any 

systematic and explicit attempt made to integrate both lines of research. Hence, we argue that 

exploring how cognitive activation and differentiation are interwoven can help us better 

understand how challenging tasks and differentiation can function in mutually beneficial 

ways, since, as we maintain, true differentiation cannot exist without challenging students 

appropriately and cognitive activation cannot fully meet its potential unless all students are 

challenged at an appropriate level.   

Apart from its theoretical contribution, this work has implications for practice, as 

suggested by studies documenting teachers’ difficulties when attempting to engage with even 

a single aspect of this challenging work, such as using enablers and extenders (e.g., 

Charalambous et al., 2022a; Hodgson, 2019; Minas, 2019; Sullivan et al., 2015) or 

scaffolding low achievers when working on challenging tasks (e.g., Pfister et al., 2015). 

Given the narrow focus to date of studies on engaging students in cognitively challenging 

work and/or on differentiation, it is timely to systematically unpack the entailments of 
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interweaving cognitive activation and differentiation in practice. Carefully decomposing the 

entailments of this work can help better understand the intricacies of such work, and in so 

doing, better support teacher educators’ attempts to help teachers implement this type of 

teaching.   

Aim 

This chapter uses classroom episodes (supported by records of practice, Lampert & 

Ball, 1998) to theoretically elaborate and exemplify what is entailed in working on 

challenging tasks with all students during lesson planning and enactment. Our work sets out 

from the premise that cognitive challenge and differentiation operate in tandem. Yet, as 

argued above, our understanding (as a community) of how challenge and differentiation play 

out in situations designed to address them together is, at best, incomplete. Hence, embarking 

on the theoretical elaboration of their interplay and outlining the entailments for the work of 

teaching to appropriately respond to this dual challenge is worthwhile. In this chapter we ask, 

How does working at the intersection of challenging tasks and differentiation in mathematics 

lessons look during lesson planning and lesson enactment? In the next section, we identify 

and explain decisions that guided our exploration of this question.  

Decisions for Studying Cognitive Activation and Differentiation in Practice 

We made three decisions that were crucial to the chapter’s structure. First, data used 

in the chapter are classroom episodes loosely based around a week-long summer school for 

fifth-grade students taught by Mr. Shea (pseudonym), an experienced elementary school 

teacher and teacher educator. The summer school was designed to illustrate teaching for 

cognitive activation and differentiation. Second, the key unit of analysis was a lesson, and we 

parsed the lesson into four phases: lesson planning, launching a task, student autonomous 

work, and whole class discussion. Third, within each lesson phase we identified teacher 

practices and moves, accompanied by a rationale that explained how they contributed 



13 

 

towards the goals of cognitive activation and differentiation. We now elaborate on each 

decision.  

Classroom Episodes 

The 25 fifth-grade students in the dedicated mathematics summer school came from 

nine different schools in Dublin, Ireland. The vast majority of primary-school students in 

Ireland are taught by teachers who use textbooks daily and for whom textbooks are the main 

planning resource (Eivers et al, 2010). Such textbooks typically contain few tasks with high 

cognitive demand (Charalambous et al, 2010), and consequently, it is likely that few students 

had extensive experience working on the kind of tasks used in the summer school. The school 

was modeled on Deborah Loewenberg Ball’s elementary mathematics laboratory 

(Shaughnessy et al., 2017) and was observed by mathematics educators from four countries.4 

The teacher teaching in the summer school has over thirty years’ experience as a teacher and 

a teacher educator. His approach to teaching is one where students are encouraged to take 

responsibility for their personal learning and for sharing their learning with peers through 

listening, questioning, responding and explaining their ideas, confusions and solutions.  

Extensive records of practice in the form of video, student work, and teacher 

interviews were collected and utilized to develop the classroom episodes used in this chapter. 

Drawing on Blanton and Kaput (2005), in this chapter we define classroom episodes to be 

units of conversation in which a practice or move occurred that promoted cognitive activation 

and differentiation. 

Unit of Analysis and Lesson Parsing 

When investigating innovative teaching, one can study various units or durations of 

teaching, such as a year (e.g. Lampert, 2001), a lesson (e.g. Stigler & Hiebert, 1999) or a 

 
4 This summer school was part of project EDUCATE (see https://ucyweb.ucy.ac.cy/educate/en), a European 

project with an explicit focus on cognitive activation and differentiation. 
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critical incident (e.g. Griffin, 2003). We chose a lesson as the key unit of analysis given its 

widespread use in the organization of school teaching and its potential for teacher learning, 

frequently through lesson study (Stigler & Hiebert, 1999).  

Many models of lesson structure have been identified (Maulana et al., 2012). Ideas of 

lesson structure are traced back to Herbart and his follower Rein, who identified five steps in 

a lesson: preparation, presentation, association, generalization and application (Ivie, 2007). 

Although in practice lessons may look very different across settings, most have an 

identifiable opening, heart, and closing (Stigler & Hiebert, 1999).  

In order to acknowledge and accommodate the wide range of lessons that occur in 

practice, we identified four phases to study. Although other alternative approaches of lesson 

structure are possible, variations of the four phases we consider herein are observed widely 

(see, for example, Stigler & Hiebert, 1999, pp. 76-83); this structure is also endorsed by 

certain Standards-based curricula in the U.S.A., such as the Connected Mathematics Project 

(Martin et al., 2012).  

The first phase, lesson planning, precedes the steps identified above and refers to 

important decisions taken about activities or tasks that will be used in the lesson (Yinger, 

1980). Although planning can be for a year or a unit of work, our focus is on the planning 

done for one lesson.  

The second phase is launching a task. This corresponds generally to the preparation 

and presentation stages of the Herbartian approach (Ivie, 2007). First, students are prepared 

for the lesson content by reviewing their prior related knowledge, from the day before or 

from earlier work. Presentation of the new lesson follows. We specifically envisage this as 

the activation of prior knowledge and the presentation or launch of a mathematical task for 

students to work on. This phase corresponds to Stigler and Hiebert’s (1999) lesson opening.  
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The third phase is student autonomous work. Herbart considered this the phase in 

which students integrate new ideas into clusters to consolidate their understanding thereof 

(Ivie, 2007). Lampert (2001) refers to “teaching while students work independently” when 

students work alone or together, with minimal but strategic teacher intervention. The teacher 

may use this time to gather material for the fourth and final lesson phase. Phase three 

corresponds to Stigler and Hiebert’s (1999) heart of the lesson.  

Phase four is whole-class discussion, which corresponds to the Herbartian stages of 

generalization and application when students are encouraged to identify general rules and 

principles and to apply these rules to reinforce their understanding (Ivie, 2007). For Lampert 

(2001), this is the stage in which students can apply mathematical norms to discuss and 

reason about their solutions to the task assigned. This phase straddles Stigler and Hiebert’s 

(1999) heart of the lesson and lesson closing. 

Although our approach to parsing lessons is grounded in the literature, the phases 

used are sufficiently flexible to accommodate many different lesson approaches. Thus, we 

expect to find lessons in which the order of the phases differs to those we describe; we also 

envision finding phases that are minimally present or absent in given lessons or that may 

recur within the same lesson.  

Identifying Practices and Moves 

Teaching moves and practices underlie our analysis of what a teacher does. The idea 

of moves or teaching moves was used in earlier literature to refer to interactions, specifically 

verbal actions used by teachers to achieve an objective (e.g. Cooney et al., 1975; Moore, 

1979; Smith et al., 1967). Although teacher-student exchanges remain important for teaching 

moves, in more recent literature some authors conceptualize the idea more broadly as “a unit 

of teaching that has coherence with respect to a purpose” (Banse et al., 2020; Jacob & 

Empson, 2016, p. 186). It is in this broader sense that we use the term “move”; although 
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many of the moves we describe imply interaction, some describe other, non-interactive 

teaching actions or decisions.  

Collectively we categorize sets of moves as practices of teaching. Although many 

conceptions of practice arise in teaching (Lampert, 2010), the one of relevance here refers to 

the professional actions a teacher does habitually as part of their work, akin to a routine. Such 

practices may be sourced in professional standards or in the work of respected teachers, and 

such practices contain sub-components (Lampert, 2010). We define practice as a set of moves 

grounded in mathematics learning used by a teacher to promote student learning (Grossman, 

et al, 2018).   

What is Entailed in Considering Cognitive Activation and Differentiation as 

Interwoven?  

In this section, we discuss the entailments of working at the nexus of cognitive 

activation and differentiation for four lesson phases: lesson planning, task launching, student 

autonomous work, and whole-class discussion (see Table 1 for a summary of these 

entailments). Engaging in a theoretical analysis, for each phase, we first organize these 

entailments into practices and moves; we then illustrate them using data from the summer 

school. Although we present these practices and moves as a viable decomposition of the work 

entailed when working concurrently on cognitive activation and differentiation, three points 

are important to clarify. First, the two focal constituent elements—cognitive activation and 

differentiation—are not present to the same degree in any given practice or move; at times, 

one may be foregrounded and one backgrounded, as the teacher attempts to maximize 

learning opportunities for all students. Second, although the level of cognitive activation and 

differentiation might differ across phases, with student autonomous work lending itself better 

to differentiation than task launching and whole-class discussion, even in the latter two 

phases all students can benefit from the interactions occurring during the lesson, albeit in 
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different degrees—a point we further explicate below. Third, despite possible overlaps 

among either practices or moves within and across phases, we are confident that each practice 

and move has independent merit for this teaching approach, which justifies its inclusion in 

the proposed decomposition of practice. To reinforce this point, in Table 1 we provide a 

rationale for the inclusion of each practice and move.   
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Table 1 

Summary of the Practices and Moves Entailed in Working at the Intersection of Cognitive Activation (CA) and Differentiation (DIF) During 

Lesson Planning and Enactment  

Lesson Phase Practice Oriented 

Toward Promoting CA 

and DIF 

Move Rationale (How is working at the intersection of CA and DIF promoted) 

A. Lesson 

Planning (LP) 

1. Selecting and 

analyzing challenging 

tasks 

(a) Selecting challenging tasks 

(b) Analyzing selected tasks  

Absent a challenging task and an analysis of what constitutes the challenge, it is 

difficult to promote challenge among students with different capacities and needs  

in terms of responding to mathematical challenge. 

2. Anticipating different 

students’ mathematical 

learning needs 

Based on students’: 

(a) characteristics 

(b) prior knowledge 

(c) possible misconceptions 

(d) alternative ideas  

In order to estimate an optimal level of challenge for different (groups of) 

students, the teacher needs to identify and then take into consideration different 

students’ (mathematical) learning needs in relation to the lesson goals.  

3. Framing and 

adapting the task’s 

challenge in response to 

students’ different 

needs 

(a) Examining the task’s 

accessibility to all students 

Teacher examines whether the task is accessible to all (diverse) students so that 

all students are challenged and that no student is overwhelmed or frustrated by 

the task requirements.  

(b) Adjusting the task complexity 

with enabling and extending 

prompts 

Teacher anticipates how a task’s mathematical challenge for students can be 

eased or raised as necessary.  

(c) Planning questions to support 

student productive engagement 

with the task   

Teacher identifies questions of varying difficulty to scaffold all students’ access 

to the task. Questions could be planned for the whole-class, groups of students or 

individual students.    

 4. Anticipating 

organizational issues  

(a) Deciding time to be allotted to 

different lesson activities and 

determining the manner in which 

students will work on the task 

(e.g., asynchronous work)  

 

 

(b) Deciding students’ 

organization during the lesson 

and the classroom setting (e.g., 

flexible grouping) 

With limited lesson time, teacher assesses task challenge relative to student 

readiness and estimates allocation of time for launching task, autonomously 

working on task, and discussing task.  

Teacher also anticipates student capacity for responding to task challenge and 

decides whether to set intermediate or holistic check-in targets for students or a 

combination of these. 

 

Teacher assesses challenge of task and student readiness for it and decides 

whether students work alone, in pairs or in groups and if applicable, how pairs 

and groups should be composed.  
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Lesson Phase Practice Oriented 

Toward Promoting CA 

and DIF 

Move Rationale (How is working at the intersection of CA and DIF promoted) 

(c) Determining how to distribute 

materials  

Teacher anticipates how resources (e.g., base-ten materials) may raise, maintain 

or lower a task’s challenge for some or all students, and consequently decides on 

universal distribution of materials or making materials accessible to particular 

groups of students.  

B. Task 

Launching (TL) 

1. Presenting the task (a) Making context accessible to 

all students 

In interacting with students, teacher assesses extent to which context may 

compound/simplify the mathematical challenge of task for different groups of 

students and frames the task presentation accordingly.  

(b) Activating student prior 

knowledge of core mathematical 

ideas 

Teacher interacts with students to activate the knowledge required by different 

students to engage with the mathematical challenge of the task.  

(c) Clarifying mathematical 

conditions of task  

In interacting with students, teacher builds consensus on the mathematical 

conditions of the task to ensure that all students can work productively on the 

task’s challenge.  

(d) Clarifying shared 

mathematical language for 

completing and discussing task  

Teacher is explicit about mathematical language to be used to ensure that 

challenge is mathematical (and not language-related, for example) for all 

students.  

(e) Checking cognitive demand of 

task for specific students and 

support required by these students 

In interacting with students, teacher evaluates inherent mathematical challenge 

for students based on students’ initial reaction to the task. 

(f) Clarifying for students the 

response required by task 

Attempting to scaffold students, teacher decides if the expected format of the 

response to the task needs to be clarified for some or all students and if so, 

clarifies it or if not refrains from doing so. 

2. 

Implementing/adapting 

and making 

organizational decisions 

Communicating expectations 

around ways of working on task, 

including tools to be used and 

time allocation during the 

autonomous-work phase  

When communicating expectations teacher takes students’ different needs for 

support (e.g., visual aids, manipulative materials, allocation of time) into account 

and judges how working on the task can best preserve its challenge. 

C. Autonomous 

work (AW) 

1. Assessing the 

complexity-

achievement alignment 

(a) Purposefully monitoring and  

interacting with students to gather 

information on how students 

respond to the task challenge. 

Teacher is evaluating student response to challenge of task with a view to 

modifying challenge for different (groups of) students. 
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Lesson Phase Practice Oriented 

Toward Promoting CA 

and DIF 

Move Rationale (How is working at the intersection of CA and DIF promoted) 

(b) Posing questions to gain 

insights into students’ reasoning 

and understanding of the task 

Teacher further interrogates student responses to challenge of task to decide how 

to address all students’ needs. 

2. Determining and 

implementing next 

instructional moves 

(a) Actively observing students’ 

productive struggle 

Teacher assesses if student struggle is productive at different levels (class, group, 

individual students) or not and responds accordingly. 

(b) Making useful modification(s) 

to task so that students can 

productively address the task 

(e.g., offering guiding questions, 

suggesting organizers to provide 

structure, shifting to simpler but 

challenging task, using tiered 

activities, simplifying core task, 

using manipulatives) 

In response to teacher’s assessment of level of challenge, teacher selects tools to 

appropriately modify the challenge for different (groups of) students, as 

necessary. Different types of scaffolds are thus provided for students who might 

face difficulties with the assigned task.   

(c) Extending the challenge for 

students who are insufficiently 

challenged by the task (e.g. 

prompting connections between 

representations, prompting work 

at higher level of sophistication, 

prompting meta-level reasoning 

about task) 

In response to teacher’s assessment of level of challenge, teacher extends 

challenge for (groups of) students who are insufficiently challenged.   

(d) Modifying classroom setting 

[e.g. (re)grouping students; 

moving from group to individual 

work] 

Teacher assesses level of challenge for students and decides to change how some, 

several, or all students continue to work on the task so that they are productively 

challenged to a level commensurate with their current needs.  

D. Whole-class 

discussion 

(WCD) 

1. Selecting and 

sequencing the 

presentation of student 

solutions/ideas 

 Having carefully monitored different students’ work on task(s), teacher decides 

order in which ideas will be shared with classmates to ensure maximum 

engagement of different students in resolution of task challenge.  
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Lesson Phase Practice Oriented 

Toward Promoting CA 

and DIF 

Move Rationale (How is working at the intersection of CA and DIF promoted) 

2. Holding students 

accountable for 

attending to and 

understanding 

classmates’ ideas 

 Teacher pushes students to explain their solutions and others’ solutions, aspiring 

that optimally all students can (strive to) make sense of and evaluate different 

proposed routes to completing the task.  

3. Eliciting of student 

reasoning and meaning-

making 

 Teacher presses students to engage in reasoning and meaning-making—thus 

cognitively activating them—based on their current level and needs. 

4. Using students’ 

incorrect or incomplete 

solutions as a resource 

for all students’ 

learning 

 Teacher interrogates, or encourages students to interrogate, why some solutions 

do not satisfy conditions of task or how students have taken a misstep so that all 

students have opportunity to learn from the cognitive challenge of analyzing 

peers’ errors and/or the missing parts of a solution.  

5. Highlighting, 

synthesizing, and 

extending important 

mathematical ideas 

while interacting with 

students  

 Teacher encourages diverse students to synthesize, or teacher synthesizes, ideas 

presented during whole-class discussion to ensure that students follow, 

understand, and expand on key mathematical ideas, which is essential to their 

being cognitively challenged at their own level. 

6. Attending to 

organizational matters  

(a) Establishing norms for sharing 

mathematical ideas so that they 

are accessible to and valued by all 

students 

Norms are established so that different student ideas are presented, described, and 

valued en route to collaboratively resolving mathematical challenge of task. Ideas 

need to be audible and visible to all students and all students need to develop 

understanding by confidently sharing their ideas.  

(b) Allocating time for discussing 

different proposed solutions  

 

Teacher monitors students’ engagement with the mathematical challenge of the 

task and allocates time to maximize mathematical learning based on different 

students’ current level of understanding, engagement, and anticipated time 

needed for different students to achieve new mathematical insights. 
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Lesson Planning 

Lesson planning is a key contributor to quality teaching (e.g., Nilsson, 2009; 

Reynolds, 1992). Given its role in teaching, we consider four teacher practices and associated 

moves that are geared toward materializing a dual focus on cognitive activation and 

differentiation during lesson planning.  

Practices and Moves: Theoretical Analysis  

Lesson Planning 1 (LP1). Selecting and Analyzing Challenging Tasks 

Selecting challenging mathematical tasks provides the bedrock for cognitively 

engaging all students. As theoretically argued (Doyle, 1983; Sullivan, 2017; Tekkumru-Kisa 

et al., 2020) and empirically documented (Kunter et al., 2013; Stein et al., 2007; OECD, 

2020), challenging tasks can engage students in cognitively activating work, which, in turn, 

can promote students’ deep learning and reasoning. To determine the suitability of a task, the 

teacher analyzes how a given task serves the teacher’s lesson goals and what makes it 

challenging. Such analyses provide insights into how the task can be modified to productively 

engage students of different readiness levels.    

Lesson Planning 2 (LP2). Anticipating Different Students’ Mathematical Learning Needs  

The teacher anticipates different students’ mathematical learning needs to ensure that 

the task selected is suitable for students. This includes considering how student 

characteristics (e.g., issues of language) might support or impede students’ work on the task 

(Cocking & Mestre, 1988), as well as consideration of students’ prior knowledge (Hailikari et 

al., 2007) and possible student misconceptions or alternative ideas (Doerr, 2006). 

Lesson Planning 3 (LP3). Framing and Adapting the Task’s Challenge in Response to 

Students’ Different Needs  

This practice includes three interrelated moves. The first relates to evaluating if the 

task is accessible to all students. Toward this end, the teacher might explore whether the 
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task’s mathematical features (e.g., representations, mathematical vocabulary, and notation), 

and non-mathematical features (e.g., contextual and linguistic) prevent certain students from 

accessing the task (Njagi, 2015; Thomas et al., 2015). The teacher explores whether the task 

offers multiple entry points (e.g., the task consists of multiple parts or uses different 

representations or manipulatives), multiple processes (i.e., the task could be solved in 

different ways) or permits multiple products (i.e., students can use different ways of 

presenting their work) (cf. Tomlinson, 2014). The second move relates to using enablers and 

extenders to adjust task complexity (see Charalambous et al., 2022a; Sullivan et al., 2006). 

The third move pertains to planning questions that can support launching the task or 

scaffolding students’ thinking as they work on it. The teacher identifies questions of varying 

difficulty to support all students’ productive engagement with the task. 

Lesson Planning 4 (LP4). Anticipating Organizational Issues 

The teacher anticipates organizational matters that might impinge on the unfolding of 

the task and the ways in which students work on it. This includes considerations regarding the 

time to be allotted to different lesson activities and the manner in which students will work on 

the task [e.g., asynchronous work: students working on different parts of the task at the same 

time (Rogers, 2007)] so that all students have the opportunity to work productively on the 

task or part of it, at their own pace; the organization of students during the lesson and the 

classroom setting [e.g., flexible grouping: students are organized in different ways according 

to their needs and progress on the task (McKeen, 2019; Tomlinson, 2014)]; and how to 

distribute materials during the lessons (e.g., deciding on the extent to which, and how, 

different materials or manipulatives will be made available to students, as well as how 

enablers and extenders will be distributed during the lesson).  
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Practices and Moves in Context 

We illustrate how these practices and moves play out during lesson planning by considering 

Mr. Shea’s lesson plan and post-lesson reflection on teaching the Chairs task (see Figure 2). 

As Mr. Shea explains, centered on pattern noticing and algebra, the Chairs problem 

represents a challenging task, since it “requires students to initially continue a given pattern, 

and then ultimately compose an algebraic expression that enables the calculation of how 

many tiles are needed to create a specified size of chair”. 5 It has the potential to engage 

students in pattern noticing and generalizing (cf. a “doing-mathematics” task according to 

Stein et al., 2000). The task lends itself to promoting worthwhile mathematical learning 

goals, including “recogniz[ing] the mathematical efficiency of creating a rule in order to 

continue a given pattern” and “translat[ing] the word problem into an algebraic expression 

that includes a variable and a constant value.” Certain aspects render the task challenging: 

“establishing the constant increase per term in the sequence and continuing the sequence for 

subsequent sizes”, “identifying the constant value and the variable”, and “translating the 

initial rule into an algebraic expression.” These need to be considered when preparing a 

lesson around this task (LP1a, b).  

Considering students’ prior knowledge needed to work on the task (LP2), Mr. Shea 

thought that solving this task would require “experience of working with number and non-

number patterns; deducing (and recording) the particular rule for a given sequence, and then 

continuing the sequence to a certain number of terms.” He thought some students might 

struggle with (a) working on the picture of the chairs and might prefer to use more tangible 

materials; (b) organizing their data to deduce the general rule; or (c) recognizing the 

significance of chair of Size 1, as a starting point. Anticipating these difficulties and 

 
5 In quotation marks are the teacher’s notes in his lesson plan or the teacher-student exchanges during lesson 

enactment.  
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attempting to adjust the task to respond to students’ needs (LP3b), he developed enablers to 

“tweak the challenge for children, without removing it,” to ensure that “all would access the 

task and work productively on it” (post-lesson reflection) (see Figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The Chairs task.  

The first enabler would help students organize their answers in a table, thereby 

facilitating their attempt to figure out the general rule. For students facing more difficulties, 

he would provide more scaffolds (second enabler) by decomposing the pattern into the 

number of tiles in Size-1 chair and then helping them see the constant addition of three tiles 

Alex uses identical tiles to make different sized chair designs for a school art project. The pictures on 

the sheet show the first three designs created, size 2, size 3 and size 4. Alex wanted a rule that would 

help work out the number of tiles needed for a chair of any size. 

 
Q 1 

• If Alex wanted to create a size 5 chair, what would it look like? Can you draw it or use other 

materials to represent it? How many tiles would be used? 

• Work out the number of tiles needed for the size 6 and size 7 chairs. Explain how you did 

this. 

• Draw or make the size 1 chair. How many tiles did you need? 

 

Q 2 

• Do you notice any pattern between the chair size and the number of tiles needed each time? 

Discuss this pattern with your partner(s). 

 

Q 3 

• Alex wanted to create a size 20 chair. Talk with your partner(s) about a rule that would help 

Alex work out the number of tiles needed for this chair. 

• Would this rule work for the previous chair sizes? 

• If yes, write out this rule in words. 

• Discuss if it would work for a chair of any size. 

Q 4 

• Could you re-write this rule using symbols/letters? 

Q 5 

• Use the rule to calculate the number of tiles needed for a “size 50” or a “size 100” chair. 
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each time. The third enabler was designed to help students present the generalization 

algebraically, something envisaged to puzzle several students.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The enablers designed for the Chairs task.  

Task Enabler 1 

In order to see a pattern between the chair size and the number of tiles needed each time, it may be 

useful to organize this information into a table.  

Complete the following table using the information you have gathered to date.  

Chair Size Number of Cards/Tiles Needed 

1  

2 11 

3  

4  

5  

6  

7  

8  

:  

:  

In your completed table do you notice any connection between the chair sizes and the number of tiles 

needed? 

 

Task Enabler 2 

Chair Size 

(S) 

Number of Tiles Needed 

(T) 

Explainer 

1 8 After drawing the ‘size 1’ chair, I counted the number 

of square cards needed. This original count gave me 

the number 8. 

2 11 Original count (8) + 3 

3 14 Original count (8) + 3 + 3 

4 17 Original count (8) + 3 + 3 + 3 

5 : : 

6 : : 

7 : : 

8 : : 

: : : 

: : : 

If T represents the ‘Number of Tiles Needed’, and S represents the ‘Chair size’, then the rule that would 

help work out the number of square cards needed would need to start with T = 8 + ………  

 

Task Enabler 3 

Could you re-write this rule using symbols/letters? 

The following sentence may help: 

 If T represents the “number of tiles needed” and S represents the “chair size”, then the rule that 

would help work out the number of tile cards needed would need to start with T = 8 + ….. 
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Likewise, Mr. Shea anticipated that some students might finish early, even after 

completing all five task questions. Aspiring to expose these students to multiple ways of 

thinking about the Chairs task, he designed two extenders (see Figure 4) that would extend 

the challenge (LP3b). Extender 1 presents three different approaches to figuring out the rule. 

Students assigned this extender would have to understand these approaches and present them 

symbolically. Extender 2 requires reverse thinking: instead of giving students the size of the 

chair and asking them to figure out the number of tiles needed to make it, students would be 

asked to figure out the size of a chair for a given number of tiles.  

Further reflecting on presenting the task, Mr. Shea considered how to make its 

mathematical and non-mathematical content more accessible to all students (LP3a). Although 

the task includes no difficult terms (except for “pattern” and “rule”), Mr. Shea thought of 

initially asking students to read it silently, then have one student read it aloud, and then have 

other students paraphrase it. To ensure that all students would start productively working on 

the first question, he thought of modifying the task (see Figure 2, modifications in underlined 

text), giving students the opportunity to present their work in multiple ways. To offer students 

multiple entry points, he would make square pattern blocks available to students needing 

them. The fact that the task admitted multiple solution approaches was an additional warrant 

that it could engage all students in challenging work. Mr. Shea planned which questions to 

ask (and to whom) (LP3c) so as to press students to “reach up a little bit” (post-lesson 

reflection).  

Reflecting on more organizational issues (LP4a, b), he thought carefully about how 

long to allocate to each lesson phase in order to avoid rushing students and maintain 

productive engagement. As he remarked, “If you’re challenging students, you have to give 

them time to think […]. If you’re giving time, you’re allowing children to think at different 

rates” (post-lesson reflection). Other organizational planning included making manipulatives 
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available so that students could use them if they wished and having enablers and extenders 

printed as handouts for distribution. The latter would help him have students work on 

different task parts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The extenders designed for the Chairs task.  

Task Extender 1: 

Other than using the table, there are various ways to find the rule that would help work out the number of 

square cards needed. Three friends, Anne, Ben and Dawn all used different methods which are shown below. 

Spend some time exploring each of these methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For each of these methods, can you write a rule using symbols/ letters that would help work out the number of 

square cards needed for a chair of any size? 

(a) Are all of these rules the same? 

(b) Are they the same as the rule you created previously? 

(c) Using any of the methods/ rules, calculate the number of square cards needed for a “size 50” chair. 

 

Task Extender 2 

In what chair size would 230 tiles be needed? Explain how you determined this.  

 

  

 



29 

 

Mr. Shea’s planning illustrates that productively engaging all students in cognitively 

demanding work begins before stepping into the classroom. Selecting a challenging task is 

just one of these decisions, followed by a series of other decisions geared toward ensuring 

that all students can access the task and that steps are taken to adjust the challenge as needed 

to meet different needs and readiness levels.  

Launching a Task 

After selecting a task and anticipating how students will respond to it, the launch 

phase begins. Two practices are evident in this phase: presenting the task to maintain 

complexity for all students (Jackson et al, 2012), which focuses on considerations related to 

the mathematical substance of the task, and making organizational decisions, which focuses 

on the organizational aspects surrounding the launching of a task.  

Practices and Moves: Theoretical Analysis  

Task Launching 1 (TL1): Presenting a Task 

First the teacher makes the task context accessible to all students. Although tasks set 

in realistic contexts can motivate students, contexts familiar to some students may be 

unfamiliar to others (Silver et al., 1995) and additional teacher effort is required to ensure 

fidelity to such tasks and keep the mathematics in the foreground (Stylianides & Stylianides, 

2008). Contextual or language features are often not mathematical but unless explicitly 

addressed during task presentation, may distract some students from solving the task and 

focusing on the mathematics.  

Next the teacher helps activate students’ prior knowledge of core mathematical ideas 

to be applied in the task. Students are reminded of relevant big mathematical ideas (e.g., 

Charles, 2005). The third move is to ensure that students understand the task’s mathematical 

conditions. The fourth move pertains to the teacher and students agreeing on mathematical 

language to be used for completing and discussing the task.   
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Fifth, although challenge and accessibility are criteria for task selection, the teacher 

needs to monitor students’ participation levels to ascertain if the challenge is appropriate for 

these specific students and to identify customized supports individual students may require 

when engaging autonomously with the task. Sixth, the teacher decides if the expected format 

of task response needs to be clarified for some or all students and acts accordingly. All these 

moves are intended to ensure that students are able to productively engage with the task at 

some level.  

Task Launching 2 (TL2): Implementing/Adapting and Making Organizational Decisions 

The second practice involved in launching the task pertains to implementing or 

adapting decisions taken during lesson planning and making additional decisions in relation 

to organizational matters. This involves the teacher communicating expectations around ways 

of working, including what tools are made available to students (Stein et al, 2008). Students 

may use various tools, including their knowledge of mathematical conventions and virtual 

and physical manipulative materials. Use of manipulative materials will be influenced by 

student choice, and physical accessibility, including proximity of the materials (Moyer & 

Jones, 2004). Students are told how to seek support if required and how much time they will 

have for working on the task during the next phase (autonomous work, see Baxter & 

Williams, 2010).6 We now return to Mr. Shea’s launch of the Chairs task with fifth-grade 

students.  

Practices and Moves in Context 

Although launching the task logically precedes student autonomous work and whole-

class discussion, task launching phases were evident throughout Mr. Shea’s lesson (see 

 
6 Although this practice seems to overlap with others in other phases, it is distinct since it pertains to the 

communication of expectations rather than their planning or the teacher’s actions to reinforce these 

expectations while interacting with students during their autonomous work.   
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Figure 5).7 Aspects of task launching appeared across six different segments of the lesson, 

with an initial long period followed by shorter follow-up periods, since the teacher opted to 

launch or clarify parts of the task interspersed between periods of student autonomous work.8 
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Figure 5. Analysis by phase (task launching, student autonomous work or whole class 

discussion) of the lesson under consideration.   

Although each figure in the given task is called a “chair”, only in a rough sense do the 

figures resemble chairs. Thus the context of this task should be accessible to all students 

(TL1a). Mr. Shea makes no obvious attempt to activate students’ prior knowledge of core 

 
7 The lesson took place over two consecutive days of the summer school (identified as Lesson Part 1 and Lesson 

Part 2 in Figure 5).  
8 If such clarifications are addressed to the whole class, they count under task (re)launching; if they are 

addressed to individual students or groups of students, they count under student autonomous work.  
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mathematical ideas in the task (e.g. around patterns or multiples of 3) but a teacher may do 

this in lessons prior to the lesson in which such knowledge will be applied (TL1b).  

In an attempt to agree with students on information given in the task, what is asked, 

and on the task conditions (TL1c), Mr. Shea asks students to paraphrase the task and clarifies 

what the protagonist in the task wants to create; he suggests that students begin the task by 

either drawing chairs in their notebooks or creating patterns with plastic tiles.  Making the 

task accessible without reducing its challenge through teacher or student actions, demands 

teacher judgment. When Mr. Shea asks Tim to paraphrase the task, Tim instead begins 

outlining how he would do the task. Mr. Shea stops him to avoid reducing the mathematical 

challenge for others. If Tim shares his solution strategy at the outset, some students would be 

deprived of “discovering” for themselves one way into the task.    

Mr. Shea initially asks students to work independently on the first part of Question 1 

of the task (to make a “size 5” chair). As students work through the two subsequent parts of 

Question 1, some notice a pattern. Question 3 of the task challenges students to find a rule to 

calculate the number of tiles in a larger chair. In light of existing research, it is expected that 

some students will propose an additive approach (adding a row of 3 for each chair) while 

others attempt a multiplicative or scaling approach (Clark & Kamii, 1996) by separating the 

chair into parts that are fixed and parts that change. The terms constant and variable can be 

linked to the chairs, where the top three tiles and the bottom two tiles are common to every 

chair and between the top three tiles and bottom two are multiples of three tiles, where the 

multiple is the chair size. While interacting with the whole-class, Mr. Shea successfully 

elicits from students the terms constant and variable and negotiates working definitions for 

these terms. Awareness of these terms reinforces for students each concept and prepares 

students for analyzing proposed rules for the chair patterns (TL1d).  
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Mr. Shea estimates students’ readiness for completing the task by asking all students 

to read it silently, then asking one student to read the task aloud and another to paraphrase it. 

When the student cannot paraphrase it, Mr. Shea asks him to read the task aloud before 

paraphrasing it. Thus, before students discuss entailments of the task, they get to read the task 

directly or listen to it being read three times and hear it paraphrased twice. Mr. Shea is 

familiarizing all students with the task and its requirements, while considering who might 

require early support when working autonomously (TL1e). Differentiation is evident in the 

multiple times students read and listen to the task being read, paraphrased or explaining what 

the task requires; this provides time for all students to become familiar with the task and to 

think about it at their own level. Listening to classmates read or paraphrase the task likely 

makes it more accessible to students who find reading difficult or who find it difficult to 

focus on the task demands; paraphrasing or explaining a task and comparing strategies can 

also better cognitively activate high-achieving students (Nemeth et al, 2019), by pressing 

them to articulate their understanding of the task. However, requiring all students to focus on 

a single large screen may be difficult for students with a visual impairment, with reading 

difficulties or who need to point to words as they read them. To address this, each student is 

given an individual copy of the task.  

Mr. Shea asks students what the character in the task wants to create; when one 

student states that a rule is required, Mr. Shea affirms the response. This move establishes 

common purpose among students before they embark on the task (TL1f).  

From an organizational perspective, in order to communicate expectations to students 

about how to work and what tools are available to them, Mr. Shea asks students to work 

independently on Question 1 of the task (TL2). Working on this relatively easy question 

likely helps some low-achieving students engage with and enter the task. Higher-achieving 
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students, who had read the entire task, advance quickly from Question 1 to begin formulating 

a rule to find any size chair.  

Collaboration with a partner is required for Question 2. Writing the rule to find the 

size of any chair (Question 3) is to be done with the same partner. Partner work is 

subsequently reinforced when students are asked to present their rules collaboratively in the 

whole-class discussion phase. In requiring students to work alone or be accountable for 

presenting the outcome of pair work (as the task itself prompts students to do in Questions 2 

and 3, see Figure 2) at different stages, Mr. Shea attempts to maintain the task’s challenge for 

all students (TL2).  

Mr. Shea places tiles on the floor in the center of a U-shaped teaching space. Using 

plastic tiles when working on the task may help some students (TL2). Students can choose to 

use or not use tiles, giving students agency to decide whether and how to use them in 

developing their mathematical ideas (Moyer & Jones, 2004).  

Later in the lesson, Mr. Shea outlines the algebraic convention of representing 

unknown quantities using letters. As social-conventional knowledge (Kamii, 2014), using 

letters in this way is not necessarily something students could deduce without intervention. 

Introducing this tool does not reduce the challenge but provides greater mathematical power 

for students to express their mathematical ideas concisely.  

In summary, Mr. Shea weaves the task launch throughout the course of the lesson, 

which maximizes time for students to work on and discuss their solutions. The initial launch 

lasts five minutes. After working individually for eight minutes, students read Question 2 of 

the task and subsequently work on this with the person sitting beside them. In another phase 

of launching the task, Mr. Shea asks students to record the rule in their notebooks when they 

figure it out. Later in the lesson, Mr. Shea begins launching Question 3 of the task. Oscar 

reads the part aloud and Maggie paraphrases it. However, before students begin working 
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autonomously in pairs as Mr. Shea intends, Tim intervenes to describe how he has already 

figured out the number of tiles required to make a size-20 chair. Mr. Shea permits this 

intervention and thus, a phase intended to launch another part of the task, becomes a whole-

class discussion of one solution (analyzed below).  

The challenge inherent in the task is maintained throughout the launch phase as it is 

read and paraphrased by students. At no stage during the launch phase does Mr. Shea or the 

students appear to compromise the mathematical challenge inherent in the task.   

Autonomous Work 

Working on challenging tasks with all students during autonomous work involves two 

main practices aimed at sustaining a learning environment that targets an appropriate level of 

challenge for students. Although we present these two practices as distinct, they operate in 

unison forming a coherent whole. 

Practices and Moves: Theoretical Analysis  

Autonomous Work 1 (AW1): Assessing the Complexity-Achievement Alignment 

The first practice entails purposefully monitoring and interacting with students 

(Lampert, 2001; Nelson, 2001; Schoenfeld, 1998; Shifter, 2001) to gather information on the 

alignment between the students’ level of achievement and the level of task complexity. This, 

in turn, can help the teacher ensure that the students are working at an appropriate level of 

challenge and detect instances where the challenge is either high or low for students. The 

detection of these latter cases can highlight the need for teacher intervention with a view to 

either lowering or elevating complexity, thus helping the teacher prepare for the whole-class 

discussion (Brendehur & Frykholm, 2000; Lampert, 2001).  

Occasionally, students’ interaction with the task is self-evident, in terms of the 

complexity-achievement alignment and, hence, assessment can be usefully carried out 

through mere observation of this interaction (AW1a), Baxter & Williams, 2010]. However, 
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frequently mere observation is insufficient and the teacher must elicit more information to 

supplement his/her understanding of the challenge level encountered by students (Nelson, 

2001; Shifter, 2001). In these cases, the teacher can pose open-ended questions (e.g., Could 

you explain this? What do you mean by that?) so as to unpack students’ reasoning (AW1b), 

Stein et al., 2008].  

Autonomous Work 2 (AW2): Determining and Implementing Next Instructional Moves 

Information derived from assessing the complexity-achievement alignment facilitates 

the determination and implementation of subsequent instructional moves aimed at aligning 

task complexity and student achievement. Quite often decisions are made spontaneously and 

they automatically lead to the implementation of the corresponding instructional moves in the 

moment. Depending on the complexity-achievement alignment, the teacher will likely take 

different moves. That does not negate the teacher’s prior lesson planning. However, because 

of the complexity of working at the intersection of cognitive activation and differentiation, 

and regardless of how meticulously the teacher plans for a lesson, it remains likely that 

additional decisions will need to be made spontaneously. Such decisions and those made in 

advance are often conducive to maintaining the cognitive challenge at intended levels, since 

they can help reduce (part of) the complexity of teaching in order to minimize the possibility 

of making decisions that inadvertently reduce the challenge for the class as a whole or for 

certain groups of students. 

In some cases, even though the challenge appears high for certain students, the 

teacher may refrain from taking immediate action, restricting himself/herself to active 

surveillance and allowing time for productive struggle. In some cases, this struggle can 

resolve the difficulty without teacher intervention (AW2a).  

However, often the challenge remains persistently and unproductively high. These 

cases prompt the teacher to modify the task, thus facilitating students’ attempt to address the 
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task (AW2b), Sullivan et al., 2015; Tomlinson, 2014]. These modifications could take 

various forms, including: 

• Offering guiding questions to make struggling students aware of their stumbling 

block and identify productive ways of moving towards the learning goal    

• Using organizers intended to provide structure (e.g., tables) 

• Taking advantage of tiered activities (Tomlinson, 1999), in which the teacher 

assumes the flexibility to regulate the pace at which students interact with various 

parts of the core task and determine specific parts that would be appropriate for 

different students  

• Shifting to tasks dealing with prerequisites to facilitate access to the core task  

• Using simpler versions of the core tasks (i.e., enablers) that deviate from the original 

task in certain aspects, such as the form of representation, the size of the numbers, or 

the number of steps 

• Using manipulatives that enable students to build on specific cases to derive 

generalized solutions.   

For students who seem to perform at a cognitive level significantly higher than the 

complexity they are presented with by the task at hand, the teacher can extend the challenge  

(AW2c, Sullivan et al., 2015). In these cases, the teacher may supplement the current task 

with more demanding sub-tasks that maintain a high challenge (i.e., extenders). Such 

modifications include:   

• Using tasks/prompts requiring students to draw connections between representations 

to deepen their thinking 

• Using tasks/prompts pushing students to work at a higher level of sophistication, e.g., 

probe the validity of certain ideas (e.g. mathematical rules), draw connections 

between ideas  
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• Using tasks/prompts to engage students at meta-level, reflective reasoning about the 

key ideas involved in the task at hand. 

For students who seem to be working at an appropriate level of challenge, the teacher can 

continue active monitoring of students’ work so as to continuously assess the complexity-

achievement alignment.    

In any case, an additional organizational move could be enacted by the teacher. The 

teacher may modify the classroom setting  (AW2d), by using flexible grouping (see 

Tomlinson, 2014; Tomlinson et al., 2003). Underlying this move is the premise that no single 

classroom setting works at all times in terms of sustaining cognitive challenge while 

concurrently engaging all students. Thus the teacher may find it useful to (re)group students 

so that students who happen to face similar difficulties are brought to work together with a 

specific enabler that could scaffold their attempt to overcome those difficulties. In other 

cases, the learning process could be enhanced by shifting away from the collective towards 

the individual level, even for a brief interval, provided this could benefit learning.  

Practices and Moves in Context 

We again step into Mr. Shea’s classroom to illustrate how the instructional practices 

and moves presented above play out during student autonomous work on the Chairs task.  

At the beginning of Lesson Part 2 (see Figure 5), following the launch of Question 3, 

the students work in pairs. Mr. Shea circulates in the classroom and carefully observes 

student work (AW1a). After allowing time to work on the task, Mr. Shea notices that Tim 

and his partner, although having easily developed the “adding three to the adjacent chair” 

rule,  are still facing difficulties moving from this rule to a general one for any size chair. He 

decides to draw on previous parts of the task, anchoring the problem to chairs of specific 

sizes (e.g., sizes 1 - 7) and use them as a frame for the pursuit of a generalized pattern across 

these instances (AW2a). Building on that, the teacher poses questions like:  
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Teacher: What size of chair is this [specific instance]?  

Tim: Size 3.  

Teacher: So, can you relate […] the size, with the number of tiles [pursuit of a 

generalized pattern]?  

At the same time, the teacher is called on by Lucas and Abby who claim that they 

have identified the general rule for the number of tiles for any size chair. The teacher asks 

students to write down the rule: “Have you written it down? It’s really important to see how 

it’s written”. The teacher, then, reads their rule and realizes that they have written something 

that he does not readily understand. Attempting to elicit more information to supplement his 

understanding, Mr. Shea asks: “How did you get that?” After students provide an 

explanation, which is still vague to the teacher, he uses an additional, neutral, probe to gain 

more insights into their reasoning: “Why are you saying that?” (AW1b). Understanding that 

the students have come up with a rule that needs some refining, the teacher asks: “What 

would the rule be for any size chair? Is that always going to be the case? Test your rule with 

chair sizes 1-7 (from the previous part of the task). If it works, go to the next question” 

(AW2a). 

After some time, the teacher returns to Tim and his partner, and realizes that both 

students are working in a structured way, developing and completing the table presented in 

the first part of Figure 6. Attempting to highlight limitations in the students’ strategy, Mr. 

Shea asks the students to use their table to figure out the number of tiles contained in the 

fiftieth chair (AW2b). Tim says they have not got that far. Immediately, the teacher 

acknowledges that Tim and his partner have devised a system that goes up to a specific size 

chair and then draws their attention to the pursuit of a more generic system. The teacher then 

says, “I’ll leave you work on that. I think you have something there that makes sense.” 
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Despite Mr. Shea’s attempt to further challenge them, Tim and his partner continue working 

on the task apparently following the “adding-three” rule (see lower part of Figure 6).  

Mr. Shea then notices another pair of students, Daniel and Amaan, who are making 

little progress on the task at hand. He provides them with Enabler 1 (See Figure 3, AW2b), 

saying: “This might help you look at it differently. See if the table can help you.” After 

giving them time to work on this enabler, the teacher realizes that they still need additional 

support. He offers them Enabler 2 (See Figure 3, AW2b). 

 

 

 

 

  

 

 

 

Figure 6. Tim and his partner’s autonomous work on Question 3 of the Chairs task. 

Another student, Lilly, proposes a way of formulating the rule for any size chair; the 

teacher engages Lilly in the process of formulating coherent arguments in support of her 

approach, by saying “If you have a way, I want you to convince your partner first of all.” 

After making sure that the student and her partner can explain the rule, the teacher invites 

them to think about the following: “Have you ever used letters in Math? Try that and explain 

it to your partner.” At a later stage and after Lilly and her partner  have successfully written 

the rule using symbols (see Figure 7), the teacher gives them Extender 1, saying: “This is 

how some other boys/girls solved the task. I’d like you to read it over and answer the 

questions” (AW2c). Shortly afterwards and after circulating and observing students’ work on 
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the task, he asks Lucas and Abby, who have also finished working on Question 4, to form a 

larger group with Lilly and her partner and work on Extender 1 (AW2d, flexible grouping). 

 

Figure 7. Lilly’s work on Question 4 of the Chairs 

The above excerpt illustrates Mr. Shea’s attempt to concurrently attend to cognitive 

challenge and differentiation during autonomous work. In doing so, the teacher needs to be 

attentive to departures from what would be deemed a productive complexity-achievement 

balance while remaining responsive through appropriate remedial and extending actions. 

Undertaking this role, the teacher allowed students to work asynchronously based on their 

needs and readiness levels.  

Whole-Class Discussion 

During whole-class discussion the teacher is expected to concurrently address the 

entire class; hence, this phase imposes different demands than those entailed in the previous 

phases when trying to differentiate the challenge for different students. Six practices, not 

assumed to occur in a particular predetermined order—with the exception of the first one—

can support the teacher in doing so.  
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Practices and Moves: Theoretical Analysis  

The first whole-class discussion practice (WCD1) pertains to selecting and 

sequencing the presentation of student ideas in a progression anticipated to support students’ 

understanding (Smith & Stein, 2011). Although such decisions (i.e. who will present, what, 

and in what order) are largely made in the previous phase, having students’ solutions 

presented in a deliberate sequence can set the ground for keeping different groups of students 

cognitively active (Stein et al., 2008).  

The second practice (WCD2) pertains to holding students accountable for attending to 

and understanding their classmates’ ideas as they are shared in the plenary; this can be done 

by asking students to revoice or rephrase their classmates’ ideas or even compare their 

classmates’ ideas to their own thinking (Chapin et al., 2003).  

WCD3 relates to the teachers’ eliciting of student reasoning and meaning-making by 

affording students opportunities to present their thinking, identify and extend patterns, 

develop generalizations, compare and/or evaluate different approaches, or engage in testing 

hypotheses or justifying answers—all found to foster deep learning (Baumert et al., 2010; 

NCTM, 2014; Silver et al., 2005). The next two practices relate to how the teacher capitalizes 

on students’ contributions to cognitively engage their classmates.  

Given prior research suggesting that capitalizing on students’ partial understanding 

can support theirs and others’ learning (Kazemi & Stipek, 2001; Santagata & Bray, 2016), 

WCD4 pertains to seizing students’ incorrect or incomplete solutions as resources to promote 

all students’ learning. WCD5 concerns the teacher’s highlighting, synthesizing, and 

extending important ideas (while interacting with students)—as opposed to simply eliciting 

them from students—to make them clear to as many students as possible (Chapin et al., 2003; 

Smith & Stein, 2011).  
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WCD6 concerns organizational issues; it includes moves such as establishing and 

maintaining norms for sharing and discussing mathematical ideas so that they are accessible 

to all students and valued by all of them (WCD6a)9 and decisions related to the time allotted 

to discussing different solutions based on students’ needs and current level of understanding 

(WCD6b). Such moves can set the ground for ensuring that all students have access to key 

mathematical ideas (NCTM, 2014).  

Practices and Moves in Context 

Although these practices are not novel, below we illustrate how they can help a 

teacher keep all students cognitively activated; we do so by stepping into Mr. Shea’s 

classroom when students are sharing solutions to Question 3 of the Chairs task.     

Noticing that Tim and his partner have worked systematically to address this 

question—something that was envisioned to support other students’ thinking (WCD1)—and 

cognizant of the fact that Tim needed a push to further articulate his ideas and to realize the 

need for developing a general rule (WCD6b), Mr. Shea decides to have him present first. 

However, he first reminds the class of certain norms: closely attending to their classmates’ 

sharing of ideas, comparing them to their own work, and coming up with questions for ideas 

they might not understand (WCD2). He considers doing so important, both for students like 

Lucas, Abby, and Lilly who often have more sophisticated ideas and may not pay attention to 

their classmates’ presentation, as well as for students like Ruth, who might not follow others’ 

explanations, thus getting demotivated and going off task (WCD6a).  

Tim starts sharing his thinking, while writing on the board:   

 

 
9We see this move as distinct from holding students accountable for attending to and understanding their peers’ 

ideas (WCD2), because whereas the first one refers to creating a classroom environment where every 

student’s contribution is taken seriously and used as a raw material for teaching, the second one pertains to the 

consequent expectation on students to take seriously their responsibility to understand different ideas, help 

clarify and interrogate those ideas, while respecting all contributors. 
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1 2  

8 11  

The teacher stops him immediately, asking him to talk louder and to write “a little bit bigger” 

so that students at the back of the classroom can hear and see (WCD6a). Tim then continues 

sharing his pattern  

1 2 3 4  

8 11 14 17  

but the teacher stops him again, to clarify what these numbers represent (WCD5) so that the 

entire class can follow. Several students nominate answers and the teacher presses them to 

use the correct terminology. Once the class clarifies that the top row corresponds to the size 

of the chairs, the teacher asks about the bottom row, calling on Ruth, who openly accepts that 

she is confused. “Being confused is okay,” the teacher says, encouraging Ruth to either pose 

a question to Tim for something she found puzzling or clarify what she has understood up to 

this point (WCD2 and WCD3). Ruth notices the pattern of “adding three each time,” but is 

unsure as to what the bottom numbers illustrate, which the teacher clarifies while interacting 

with her and other students. Being asked to follow Tim’s rule, the class then continues filling 

in the table, until Tim makes a mistake:  

    size 1 2 3 4 5 6 7 8 

tiles 8 11 14 17 20 23 26 28 

Seizing this teachable moment to engage other students like Lucas and Lilly, who seemed to 

be off-task, the teacher asks: “What might some problems with this approach be? Why might 

other approaches that you have thought of work better?” (WCD4). Through the ensuing 

discussion, the teacher presses students to think of limitations of the “adding three” rule. 

Doing so surfaces two such limitations (i.e., need to always find the previous term; and when 
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a mistake is made, all subsequent terms are incorrect), but also cognitively activates some 

students who, despite the teacher’s effort, were not paying attention.  

The teacher opts to have Lilly’s solution shared next, recognizing that hers is more 

abstract and had it been presented first, it might have confused several students (WCD1). He 

again reminds students to listen closely to Lilly’s solution, thinking how hers is different 

from Tim’s (WCD2 and WCD3). Lilly starts sharing “Basically, you need the size number, 

say four. Four times three is twelve, plus five is seventeen.” Pressing Lilly to further unpack 

her thinking—thus raising the challenge for her, but also aiming to support other students’ 

understanding—the teacher asks: “What do each of the three numbers stand for?” Lilly 

explains that five represents the “two tiles at the top and the three tiles at the bottom, which 

are fixed,” but encounters difficulties further articulating her thinking. Mr. Shea invites other 

students, “Can someone tell us Lilly’s rule in their own words?” Although several students 

contribute ideas, the teacher ensures that the numbers are explicitly connected to the 

respective diagram. He further challenges students who had solved the problem following 

Lilly’s rule to articulate their thinking: “But how do we know what to multiply three with 

each time?” Other students are invited to either raise a question or to explain how they 

understood Lilly’s rule (WCD2 and WCD3). Mr. Shea interjects as needed, posing questions 

to the entire class and ensuring that certain mathematical terms (e.g., constant, variable) are 

co-constructed and used.  

The lesson concludes by the teacher pushing students a step farther, asking them to 

write in their notebooks at least one similarity or difference between Tim’s and Lilly’s rules. 

In doing so, the teacher has all students work at the same task, but differentiates the expected 

product, since students can come up with different answers and generate as many as they like.  

The six foregoing practices do not work in isolation, but rather in unison, when 

attempting to cognitively activate the class during whole-class discussion. To bring this idea 
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home, it suffices to consider how these practices support the teacher in addressing different 

students: the more advanced ones, those who perform relatively well, and those who struggle. 

Take, for example, Lilly, Abby, and Lucas who typically finish their work early, come up 

with more complex ways of approaching challenging tasks, and often lose interest during 

whole-class discussion, believing that they might not benefit from others’ sharing. The 

cognitive challenge might be sustained or even elevated for these students when asking them 

to closely listen to and understand their classmates’ solutions and compare them to their own 

(Lampert, 1990; Silver et al., 2005). Pressing them to unpack their thinking can also 

challenge them, since prior research has documented the challenge in articulating one’s 

thinking to render it comprehensible (National Research Council, 2000). Students, like Tim, 

who do relatively well in solving challenging tasks but stick to a particular solution approach 

can be kept cognitively activated by being pressed to present their solutions and/or being held 

accountable for understanding others’ solutions. Even when the sharing of solutions starts 

with a solution that involves a misconception or a solution that seems beyond these students’ 

reach, the requirement to try and understand what is being shared or to ask questions about it, 

can keep these students activated. Students like Ruth, on the other hand, might struggle with 

not only solving challenging tasks but also following other students’ sharing. Creating a 

classroom culture that allows these students to acknowledge their difficulties and ask for 

clarifications sets the ground for them to be cognitively engaged. Through the purposeful 

sequencing of solutions (so that these students can follow) and through the teacher’s constant 

attention to clarifying key mathematical ideas, the teacher can create a classroom learning 

environment that cognitively challenges these students in their own zone of proximal 

development (Vygotsky, 1978).  
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Conclusions 

Recognizing the importance of considering teaching dimensions as systems rather than as 

isolated components (cf. Hiebert &Stigler, in press), in this chapter we focused on two key 

teaching dimensions, namely cognitive activation and differentiation. Instead of simply 

juxtaposing them, we considered them as being interwoven and in constant interaction with 

each other. Aiming to better understand the entailments of teaching at the intersection of 

cognitive activation and differentiation, we decomposed this intricate and important work 

into a list of practices and moves, which we grouped into four different interrelated phases: 

lesson planning, task launching, student autonomous work, and whole-class discussion. We 

illustrated these practices and moves drawing on the teaching of an experienced teacher and 

teacher educator during a summer laboratory school whose teaching suggested that working 

at the intersection of cognitive activation and differentiation is possible. This decomposition 

clearly illustrates the complexities inherent in this work and can have important implications 

for researchers as well as teachers and teacher educators.  

 Researchers might find the approach undertaken in this chapter—that is to 

conceptually consider teaching for cognitive activation and differentiation as interwoven—

useful when trying to examine how teaching quality relates to student learning. Other 

approaches for exploring this interplay might pertain to considering the interplay of the two 

dimensions at the level of operationalization (e.g., developing scales with one dimension at 

the upper end) or the level of measurement (e.g., using moderation effects). Although there 

seems to be a broad consensus on raising achievement for all students (cf. Kyriakides et al., 

2018; Schleicher, 2014), examining the extent to which teachers can achieve this goal and 

how this affects student learning is still an open empirical question. The three approaches 

outlined above provide viable ways of contributing to this vital discussion. Future empirical 
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work that examines how they compare to each other in terms of addressing this question is 

needed.   

 Teachers not only need to select and modify challenging tasks, but they have to 

constantly assess students’ needs and readiness levels and adapt their teaching accordingly, 

ensuring that the level of challenge offered to students is consistent with their zone of 

proximal development. By offering students who might struggle appropriate levels of 

scaffolding or cognitive support [to use Kleickmann and colleagues’ (2020) words] while 

also ensuring that high-achieving students are also appropriately challenged, teachers can 

create challenging learning environments that are customized to their students’ needs. This 

work becomes even more challenging in contemporary classes, given the increased diversity 

of the student population (OECD, 2012) and the increasing responsibilities and expectations 

often put before teachers (see, for example, European Commission/EACEA/Eurydice, 2021).  

The challenges of such teaching require a dedicated teacher focus at all lesson stages, 

beginning with the planning. Before the lesson begins, the teacher needs to select and analyze 

tasks, anticipate multiple student learning needs, relate the challenge to the needs, and 

anticipate organizational issues that may influence challenge and differentiation. The task 

needs to be presented and deconstructed in an accessible manner and the organization needs 

to support differentiation and challenge. When students are working autonomously, the 

teacher assesses how well aligned are the task challenge and the students’ capacities for 

challenge, while maintaining a view on the subsequent instructional moves. At the whole-

class discussion phase, the teacher sequences students’ sharing of ideas, holds students 

accountable for engaging with classmates’ ideas, elicits students’ reasoning while using 

errors and misunderstandings as learning resources for the full class, and ensures that key 

ideas are highlighted, synthesized and extended while attending to the extent to which the 

classroom organization is conducive to these activities. This demanding work on the 
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teacher’s part requires ongoing and dedicated commitment to promoting challenge and 

differentiating teaching for students.  

This decomposition of practice can also have important implications for teacher 

educators. Despite the challenges outlined above, given the priority placed on ambitious 

teaching (Cohen, 2011; Lampert et al., 2010) and on issues of access and equity when 

teaching mathematics (Ball, 2021; NCTM, 2014), teaching at the intersection of cognitive 

challenge and differentiation offers a worthwhile vision for teachers in contemporary classes. 

Yet, to realize this vision, teachers need systematic and sustained learning opportunities to 

experiment with and reflect upon this type of work at different junctures of their career. 

Starting from initial teacher education, prospective teachers need systematic opportunities for 

guided experimentation and reflection upon this type of teaching in either approximations of 

teaching practices that offer the opportunity to “learn to kayak on calm waters” (Grossman et 

al., 2009, p. 2076) or in real classroom settings while receiving feedback from university 

tutors. Such opportunities can help future teachers aspire to this type of teaching and the 

confidence that, albeit hard, it is worth pursuing. In fact, two recent studies (Charalambous et 

al., 2022a, 2022b) attest to the fact that it is both possible and responsible to offer teachers 

such opportunities for experimentation and reflection upon practice and that even prospective 

teachers, to certain degrees, can apply aspects of this teaching in their work during field 

placement. Yet, such opportunities should not be limited only to initial teacher education: 

they need to be offered throughout teachers’ careers, especially given that practicing teachers 

might have few concrete images of observing or engaging in this kind of teaching (Lampert 

et al., 2010).  

Although suggesting and empirically corroborating that teaching that simultaneously 

challenges and differentiates is possible, further work is needed in this area. For instance, in 

addition to the initial conceptual work around understanding the interplay of cognitive 
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activation and differentiation undertaken in this chapter, further iterations between the 

practice and theory of such teaching will be required in order to extend the findings presented 

here, which are necessarily limited in scope. A second direction pertains to a more detailed 

interrogation of the impact of this teaching on students. Although students demonstrated their 

engagement in the lesson through their oral sharing of insights and interrogation of ideas and 

their written responses to lesson tasks and prompts, a deliberate decision was made to focus 

on the opportunities crafted for student learning; how students actually made use of these 

opportunities represents another important and fruitful area of exploration (see more on 

opportunities and use in Fend, 1981 and more recently in Charalambous & Praetorius, 2020). 

More than two decades ago, supporting teachers working in disadvantaged areas to 

engage their students in cognitively challenging work, Silver and colleagues (1996) 

documented the “revolution of the possible” in reforming middle-grade mathematics 

teaching. Working against all odds and in a context that doubted the possibility of these 

students to engage with challenging tasks, let alone learn important mathematics, Silver and 

colleagues showed that immersing students from disadvantaged backgrounds in challenging 

work is feasible, responsible, and beneficial, albeit hard work. Such bold visions are still 

needed today if we are to engage all students in cognitively activating work. Yet, visions 

alone are not particularly helpful if we fail to devise the tools and the strategies that help to 

materialize them in contemporary classes. It is hoped that the decomposition of practice 

undertaken in this chapter and the images of teaching provided by Mr. Shea’s work 

contribute, at least to some degree, toward this direction by offering ideas to teacher 

educators, professional developers and teachers about how they can scaffold prospective and 

practicing teachers’ experimentation with and reflection upon this type of teaching. 
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